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Quantum oscillations in hole-doped high-temperature superconductors are difficult to understand within the
prevailing views. An emerging idea is that of a putative normal ground state, which appears to be a Fermi
liquid with a reconstructed Fermi surface. The oscillations are due to formation of Landau levels. Recently the
same oscillations were found in the electron-doped cuprate, Nd2−xCexCuO4, in the optimal to overdoped
regime. Although these electron-doped nonstoichiometric materials are naturally more disordered, they strik-
ingly complement the hole-doped cuprates. Here we provide an explanation of these observations from the
perspective of density waves using a powerful transfer matrix method to compute the conductance as a
function of the magnetic field.
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I. INTRODUCTION

Periodically a class of experiments tend to disturb the
status quo of the prevailing views in the area of high-
temperature cuprate superconductors. Recent quantum oscil-
lation �QO� experiments1–8 fall into this category.9 The first
set of experiments were carried out in underdoped high-
quality crystals of well-ordered YBa2Cu3O6+� �YBCO�, stoi-
chiometric YBa2Cu4O8, and the overdoped single-layer
Tl2Ba2CuO6+�.10

More recently oscillations are also observed in electron-
doped Nd2−xCexCuO4 �NCCO�.11 The measurements in
NCCO for 15%, 16%, and 17% doping11 are spectacular. The
salient features are: �1� the experiments are performed in the
range 30–64 T, far above the upper critical field, which is
about 10 T or less; �2� the material involves single CuO
plane, and therefore complications involving chains, bilay-
ers, Ortho-II potential,12 etc., are absent; �3� stripes13 may
not be germane in this case.14 It is true, however, that neither
spin-density wave �SDW� nor d-density wave �DDW� �Ref.
15� are yet directly observed in NCCO in the relevant doping
range but QOs seem to require their existence, at least the
field-induced variety �see, however Ref. 16�; �4� these ex-
periments are a tour de force because the sample is nonsto-
ichiometric with naturally greater intrinsic disorder. The ef-
fect is therefore no longer confined to a limited class of high-
quality single crystals; �5� the authors have also succeeded in
seeing the transition from low- to high-frequency
oscillations17 in NCCO as a function of doping.

Here we focus on NCCO. We shall see that disorder plays
an important role. Without it is impossible to understand why
the slow oscillations damp out below 30 T for 15% and 16%
doping, and below 60 T for 17% doping, even though the
field range is very high. For 17% doping, where a large hole
pocket is observed corresponding to very fast oscillations
�inconsistent with any kind of density wave order�, the ne-
cessity of such high fields can have only one explanation,
namely, to achieve a sufficiently large �c�, where �c
=eB /m�c, � is the scattering lifetime of the putative normal
phase, m� the effective mass, and B the magnetic field.
Qualitatively, the Dingle factor, D, that suppresses quantum
oscillations is D=e−p�/�c�, where p is the index for the har-

monic. Assuming a Fermi velocity, suitably averaged over an
orbit to be vF, the mean-free path l=vF�. Thus D can be
rewritten as D=e−p��ckF/eBl. A crude measure for kF is given
by expressing the area of an extremal orbit, A, as A=�kF

2 . By
setting m�vF=�kF, the explicit dependence on the parameters
m� and vF was eliminated. Assuming that the mean-free
paths for the hole and the electron pockets are more or less
the same, not an unreasonable assumption, the larger pock-
ets, with larger kF, will be strongly suppressed for the same
value of the magnetic field because of the exponential sensi-
tivity of D to the pocket size. This argument is consistent
with our exact transfer matrix calculation using the Landauer
formula for the conductance presented below.

Here we show that the oscillation experiments in NCCO
reflect a broken translational symmetry18 that reconstructs
the Fermi surface in terms of electron and hole pockets.9 The
emphasis is not the transfer matrix method itself but its use
in explaining a major experiment in some detail. We study
both SDW and singlet DDW orders with the corresponding
mean-field Hamiltonians. A more refined calculation, beyond
the scope of the present paper, will be necessary to see the
subtle distinction between the two order parameters.

In Sec. II, we introduce our mean-field Hamiltonians and
in Sec. III, we discuss the transfer matrix method for the
computation of quantum oscillations of the conductance.
Section IV contains the results of our numerical computa-
tions and Sec. V our conclusions.

II. MEAN-FIELD HAMILTONIAN

We suggest that the experiments in NCCO can be under-
stood from a suitable normal state because the applied mag-
netic fields between 30 and 65 T are so far above the upper
critical field, which is less than 10 T, that vortex physics and
the superconducting gap are not important. Our assumption
is that a broken translational symmetry state with an ordering
vector Q= �� /a ,� /a� �a being the lattice spacing� can re-
construct the Fermi surface resulting in two hole pockets and
one electron pocket within the reduced Brillouin zone,
bounded by the constraints on the wave vectors kx�ky
= �� /a. One challenge here is to understand why the large
electron pockets corresponding to 15% and 16% doping re-
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sulting from the band-structure parameters for NCCO de-
fined below are not observed but the much smaller hole
pockets are. Another challenge is to understand why the large
Fermi surface at 17% doping is not observed until the ap-
plied field reaches about 60 T. The reason we believe is the
existence strong cation disorder in this material. It is there-
fore essential to incorporate disorder in our Hamiltonian. For
the Hamiltonian itself, we consider a mean-field approach,
and for this purpose we consider two possible symmetries,
one that corresponds to a singlet in the spin space �DDW�
and one that is a triplet in the spin space �SDW�. Note that
these are particle-hole condensates for which orbital function
does not constrain the spin wave function unlike a particle-
particle condensate �superconductor� because there are no
exchange requirements between a particle and a hole.

We believe that it is reasonable that as long as a system is
deep inside a broken symmetry state, mean-field theory and
its associated elementary excitations should correctly capture
the physics. The fluctuation effects will be important close to
quantum phase transitions. However, there are no indications
in the present experiments that fluctuations are important.
The microscopic basis for singlet DDW Hamiltonian is dis-
cussed in some detail in Refs. 19 and 20, and in references
therein. So, we do not see any particular need to duplicate
this discussion here. The mean-field Hamiltonian for the sin-
glet DDW in real space, in terms of the site-based fermion
annihilation and creation operators of spin �, ci,�, and ci,�

† , is

HDDW = �
i,�

	ici,�
† ci,� + �

i,j,�
ti,je

iai,jci,�
† cj,� + H.c., �1�

where the nearest-neighbor hopping matrix elements are

ti,i+x̂ = − t +
iW0

4
�− 1��ix+iy�, �2�

ti,i+ŷ = − t −
iW0

4
�− 1��ix+iy�. �3�

Here W0 is the DDW gap. We also include the next-nearest-
neighbor hopping t� whereas the third-neighbor hopping t� is
ignored to simplify computational complexity without losing
the essential aspects of the problem. The parameters t and t�
are chosen �see Table I� to closely approximate the more

conventional band structure, as shown in Fig. 1. We have
checked that the choice t�=0 provides reasonably consistent
results for the frequencies in the absence of disorder. For
example, for DDW, and 15% doping, the hole pocket fre-
quency is 185 T, and the corresponding electron pocket fre-
quency is 2394 T.

Similarly, the SDW mean-field Hamiltonian is

HSDW = �
i,�

�	i + �VS�− 1�ix+iy�ci,�
† ci,� + �

i,j,�
ti,je

iai,jci,�
† cj,�

+ H.c. �4�

and the spin �= �1 while the magnitude of the SDW am-
plitude is VS. In both cases, a constant perpendicular mag-
netic field B is included via the Peierls phase factor ai,j

= 2�e
h �j

iA ·dl, where A= �0,−Bx ,0� is the vector potential in
the Landau gauge. We note that usually a perpendicular mag-
netic field, even as large as 60 T, has little effect on the DDW
gap,21 except close to the doping at which it collapses, where
field-induced order may be important.

We have seen previously19 that the effect of long-ranged
correlated disorder is qualitatively similar to white noise in-
sofar as the QOs are concerned. The effect of the nature of

TABLE I. The band parameters, the chemical potential, and the mean-field parameters for DDW and
SDW used in our calculation. F in tesla corresponds to the calculated oscillation frequencies of the hole
pocket, the so-called slow frequencies. The measured F for 15% doping is 290�10 T and for 16% doping
is 280�15 T. The calculated magnitude of F does depend on the neglected t�.

Order
t

�eV� t� W0 VS 
 V0

F
�T�

DDW 15% 0.3 0.45t 0.1t � −0.40t 0.8t 195

DDW 16% 0.3 0.45t 0.1t � −0.365t 0.8t 165

SDW 15% 0.3 0.45t � 0.05t −0.403t 0.8t 195

SDW 16% 0.3 0.45t � 0.05t −0.366t 0.8t 173

(0,0) (0,0)( )

FIG. 1. �Color online� The solid curve represents the t-t�-t� band
structure �t=0.38 eV, t�=0.32t , t�=0.5t��, and the dashed curve
corresponds to t-t� band structure, �see Table I�. The quasiparticle
energy is plotted in the Brillouin zone along the triangle �0,0�
→ �� ,0�→ �� ,��→ �0,0�. In the inset, the chemical potential, 
,
was adjusted to obtain approximately 15% doping.
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disorder on the spectral function of angle-resolved photo-
emission spectroscopy �ARPES� was found to be far more
important. The reason is that the coherence factors of the
ARPES spectral function are sensitive to the nature of the
disorder because they play a role similar to Wannier func-
tions. In contrast, the QOs are damped by the Dingle factor,
which is parametrized by a single lifetime and disorder en-
ters in an averaged sense.

Thus, it is sufficient to consider on-site disorder. The on-
site energy is �-correlated white noise defined by the disor-
der average 	i=0 and 	i	j=V0

2�i,j. For an explicit calculation,
we need to choose the band-structure parameters, W0, VS,
and the disorder magnitude V0. When considering the mag-
nitude of disorder one should keep in mind that the full band-
width is 8t. The magnetic field ranges roughly between 30
and 64 T, representative of the experiments in NCCO. The
magnetic length is lB=�� /eB, which for B=30 T is approxi-
mately 12a, where the lattice constant a is equal to 3.95 Å.

The effect of potential scattering that modulates charge
density is indirect on twofold commensurate SDW or DDW
order parameter,22 mainly because SDW is modulation of
spin and DDW that of charge current. Thus, the robustness of
these order parameters with respect to disorder protects the
corresponding quasiparticle excitations insofar as quantum
oscillations are concerned, as seen below in our exact nu-
merical calculations. Thus we did not find it important to
study this problem self consistently.

III. TRANSFER MATRIX METHOD

The transfer matrix method and the calculation of the
Lyapunov exponents sketched elsewhere19 is fully described
here for the case of singlet DDW; for SDW the generaliza-
tion is straightforward, where the diagonal term must be
modified because of VS, and the term W0 will be absent.
Consider a quasi-one-dimensional system, L�M, with a pe-
riodic boundary condition along y direction. Let �n
= �
n,1 ,
n,2 , . . . ,
n,M�T be the amplitudes on the slice n for
an eigenstate with a given energy, then the amplitudes on
three successive slices satisfy the relation

��n+1

�n
	 = �Tn

−1An − Tn
−1Bn

1 0
	� �n

�n−1
	 = Tn� �n

�n−1
	 ,

�5�

where Tn, An, and Bn are M �M matrices. The nonzero ma-
trix elements of the matrix An are

�An�m,m = 	n,m − 
 ,

�An�m,m+1 = �− t +
iW0

4
�− 1�m+n	e−in�,

�An�m,m−1 = �− t +
iW0

4
�− 1�m+n	ein�, �6�

where �=2�Ba2e /h is a constant. For the matrix Bn,

�Bn�m,m = − �− t −
iW0

4
�− 1�m+n	 ,

�Bn�m,m+1 = − t�ei�−n+1/2��,

�Bn�m,m−1 = − t�ei�n−1/2��. �7�

For the matrix Tn, we note that Tn=Bn+1
† .

The 2M Lyapunov exponents, �i, of limN→��TNTN
† �1/2N,

where TN=
 j=1
j=NT j, are defined by the corresponding eigen-

values �i=e�i. All Lyapunov exponents �1��2� . . . ��2M,
are computed by a procedure given in Ref. 23. The modifi-
cation here is that this matrix is not symplectic. Therefore all
2M eigenvalues have to be computed. The remarkable fact,
however, is that except for a small fraction, consisting of
larger eigenvalues, the rest do come in pairs �� ,1 /��, as for
the symplectic case, within numerical accuracy. We have no
analytical proof of this curious fact. Clearly, larger eigenval-
ues contribute insignificantly to the more general formula for
the conductance,24

��B� =
e2

h
Tr�

j=1

2M
2

�TNTN
† � + �TNTN

† �−1 + 2
. �8�

When the eigenvalues do come in pairs, the conductance
formula simplifies to the more common Landauer formula,25

�xx�B� =
e2

h
�
i=1

M
1

cosh2�M�i�
. �9�

The transfer matrix method is a very powerful method
and the results obtained are rigorous compared to ad hoc
broadening of the Landau levels, which also require more
adjustable parameters to explain the experiments. Once the
distribution of disorder is specified there are no further ap-
proximations. We note that the values of M were chosen to
be much larger than our previous work,19 at least 128 �that is,
128 a in physical units� and sometimes as large as 512. The
length of the strip L is varied between 105 and 106. This
easily led to an accuracy better than 5% for the smallest
Lyapunov exponent, �i, in all cases.

We have calculated the ab-plane conductance but the
measured c-axis resistance, Rc, is precisely related to it, at
least as far as the oscillatory part is concerned. This can be
seen from the arguments in Ref. 26. Although the details can
be improved, the crux of the argument is that the planar
density of states enters Rc: the quasiparticle scatters many
times in the plane while performing cyclotron motion before
hopping from plane to plane �measured ab-plane resistivity
is of the order 10 
� cm as compared to 1 � cm for the
c-axis resistivity even at optimum doping14�. It is worth not-
ing that oscillations of Rc also precisely follows the oscilla-
tions of the magnetization in overdoped Tl2Ba2CuO6+�.10

IV. RESULTS

There are clues in the experiments11 that disorder is very
important. For 15% and 16% doping, the slow oscillations in
experiments, of frequency 290–280 T, are not observed until
the field reaches above 30 T, which is much greater than
Hc2�10 T. For 17% doping the onset of fast oscillations at
a frequency of 10,700 T are strikingly not observable until
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the field reaches 60 T. The estimated scattering time from the
Dingle factor at even optimal doping and at 4 K is quite
short.

For 17% doping corresponding to 
=−0.322t and the
band structure given in Table I, a slight change in disorder
from V0=0.7t to V0=0.8t makes the difference between a
clear observation of a peak to simply noise within the field
sweep between 60 and 62 T, as shown in Figs. 2 and 3. Since
in this case W0=VS=0, there is little else to blame for the
disappearance of the oscillations for fields roughly below 60
T. The results are essentially identical for small values of W0,
such as 0.025t.

For 15% and 16% dopings, we chose V0 to simulate the
fact that oscillations seem to disappear below 30 T. The field
sweep was between 30 and 60 T. The results for DDW order
are shown in Figs. 4 and 5.

The most remarkable feature of these figures is that dis-
order has completely wiped out the large electron pocket
leaving the small hole pocket visible. To emphasize this

point, we also plot the results for 15% doping but with much
smaller disorder V0=0.2t; see Fig. 6. Now we can see the
fragmented remnants of the electron pocket. With further
lowering of disorder, the full electron pocket becomes vis-
ible. It is clear that disorder has a significantly stronger effect
on the electron pockets than on the hole pockets. This, as we
noted earlier, is largely due to higher density of states around
the antinodal points, which significantly accentuates the ef-
fect of disorder.19

We have done parallel calculations with SDW order as
well. The results are essentially identical. They are shown
again for 15% and 16% doping in Figs. 7 and 8. We have
kept all parameters fixed while adjusting the SDW gap to
achieve as best an approximation to experiments as possible.

It is important to summarize our results in the context of
experimental observations. First, we were able to show that
the electron pocket frequencies are strikingly absent because
of disorder and the slow frequencies corresponding to the
hole pocket for 15% and 16% doping damp out below about
30 T, even though Hc2 is less than 10 T. Similarly, that the
high-frequency oscillations at 17% doping do not arise until
about 60 T has a natural explanation in terms of disorder,
although in this case some magnetic breakdown effect,
which was not explored, can be expected. This requires both
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FIG. 2. �Color online� The main plot shows the Fourier trans-
form of the field sweep shown in the inset. The peak is at 10 695 T.
The inset is a smooth background subtracted Shubnikov de Haas
oscillations, as calculated from the Landauer formula for 17% dop-
ing as a function of 1 /B. The disorder parameter is V0=0.7t. The
band-structure parameters are given in Table I.

0.0162 0.0164 0.0166

0.1

0.08

0.06

0.04

0.02

0

0.02

0.04

0.06

0.08

0.1

1/B ( T )-1

-

-

-

-

-

FIG. 3. �Color online� The same parameters as in Fig. 2 but
V0=0.8t. The background subtracted conductance is simply noise to
an excellent approximation.
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FIG. 4. �Color online� The same plot as in Fig. 2, except for
15% doping and DDW order. The parameters are given in Table I.
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FIG. 5. �Color online� The same plot as in Fig. 2, except for
16% doping and DDW order. The parameters are given in Table I.
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further experimental and theoretical investigations. The cal-
culated frequency of the high-frequency oscillations,
10 695 T is remarkably close to experimental value of 10,
700�400 T. As to the magnitude of the slow oscillations,
the calculated values are given in Table I, which are reason-
able in both magnitude and trend when compared to experi-
ments. The small discrepancies in the magnitude of F are due
to our neglect of t� in the band structure. This can be, and
was, checked by checking the pure case, that is, without
disorder.

V. CONCLUSIONS

In the absence of disorder or thermal broadening, the os-
cillation waveforms are never sinusoidal in two dimensions
and contain many Fourier harmonics. At zero temperature,
moderate disorder converts the oscillations to sinusoidal
waveform with rapidly decreasing amplitudes of the harmon-
ics. Further increase in disorder ultimately destroys the am-
plitudes altogether. Many experiments exhibit roughly sinu-
soidal waveform at even ultralow temperatures, implying

that disorder is important. The remarkably small electronic
dispersion in the direction perpendicular to the CuO planes
cannot alone account for the waveform.

For NCCO it is no longer a mystery as to why the fre-
quency corresponding to the larger electron pocket is not
observed. As we have shown, disorder is the culprit. Neither
is the comparison with ARPES controversial,14 as in the case
of YBCO, since there is good evidence of Fermi-surface
crossing in the direction �� ,0�→ �� ,��, which is a signature
of the electron pocket. The crossing along �� ,��→ �0,0� can
be easily construed as an evidence of a small hole pocket for
which half of it is made invisible both from the coherence
factors and disorder effects.19 For electron-doped materials,
such as NCCO and PCCO, it is known14 that the Hall coef-
ficient changes sign around 17% doping and therefore the
picture of reconnection of the Fermi pockets is entirely plau-
sible, with some likely magnetic breakdown effects. The real
question is what is the evidence of SDW or DDW in the
relevant doping range between 15% and 17%. From neutron
measurements, we know that there is no long-range SDW
order for doping above 13.4%.27 We cannot rule out field-
induced SDW at about 30 T. For DDW, there are no corre-
sponding neutron measurements to observe its existence.
Given that DDW is considerably more hidden15,28 from com-
mon experiments, it is more challenging to establish it di-
rectly. NMR experiments in high fields for suitable nuclei
can shed light on this question. The unavoidable logical con-
clusion from the QO measurements is that a density wave
that breaks translational symmetry must be present. We sug-
gest that motivated future experiments will be necessary to
reach a definitive conclusion. Finally, at the level of mean-
field theory we have been unable to decide between SDW
and singlet DDW. At the moment the best recourse is to
experimentally look for spin zeros in the amplitude of quan-
tum oscillations in a tilted magnetic field. A theoretical dis-
cussion of this phenomenon that can potentially shed light
between a triplet order parameter �SDW� and a singlet order
parameter, the singlet DDW discussed here, was provided
recently.29 So far experiments are in conflict with each other
in YBCO: one group suggests a triplet order parameter30,31

and the other a singlet order parameter.32

It is unquestionable that the QO experiments are likely to
change the widespread views in the field of high-temperature

0 500 1000 1500 2000 25000

20

40

60

80

0.020 0.025 0.030

6
4
2
0
2
4

In
te
ns
ity

(a
rb
itr
ar
y
un
its
)

F (T)

1/B (T )-1

-
-
-

FIG. 6. �Color online� The same plot as in Fig. 4, except that
V0=0.2t instead of 0.8t. There is now a fragmented electron pocket
centered around 2100 T and the main peak is at 183 T. The rest of
the parameters are given in Table I.
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superconductivity. Although the measurements in YBCO are
not fully explained, the measurements in NCCO appear to
have a clear and simple explanation, as shown here. How-
ever, given the similarity of the phenomenon in both hole-
and electron-doped cuprates, it is likely that the quantum
oscillations have the same origin.
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